Concerning the Wave Equation on Asymptotically Euclidean Manifolds

نویسندگان

  • CHRISTOPHER D. SOGGE
  • CHENGBO WANG
چکیده

We obtain KSS, Strichartz and certain weighted Strichartz estimate for the wave equation on (R, g), d ≥ 3, when metric g is non-trapping and approaches the Euclidean metric like 〈x〉 with ρ > 0. Using the KSS estimate, we prove almost global existence for quadratically semilinear wave equations with small initial data for ρ > 1 and d = 3. Also, we establish the Strauss conjecture when the metric is radial with ρ > 1 for d = 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Semilinear Wave Equation on Asymptotically Euclidean Manifolds

We consider the quadratically semilinear wave equation on (R, g), d ≥ 3. The metric g is non-trapping and approaches the Euclidean metric like 〈x〉. Using Mourre estimates and the Kato theory of smoothness, we obtain, for ρ > 0, a Keel–Smith–Sogge type inequality for the linear equation. Thanks to this estimate, we prove long time existence for the nonlinear problem with small initial data for ρ...

متن کامل

ar X iv : 0 90 1 . 00 22 v 4 [ m at h . A P ] 2 5 O ct 2 01 0 CONCERNING THE WAVE EQUATION ON ASYMPTOTICALLY EUCLIDEAN

We obtain KSS, Strichartz and certain weighted Strichartz estimates for the wave equation on (R, g), d ≥ 3, when metric g is non-trapping and approaches the Euclidean metric like 〈x〉 with ρ > 0. Using the KSS estimate, we prove almost global existence for quadratically semilinear wave equations with small initial data for ρ > 1 and d = 3. Also, we establish the Strauss conjecture when the metri...

متن کامل

Equipartition of Energy in Geometric Scattering Theory

In this note, we use an elementary argument to show that the existence and unitarity of radiation fields implies asymptotic partition of energy for the corresponding wave equation. This argument establishes the equipartition of energy for the wave equation on scattering manifolds, asymptotically hyperbolic manifolds, asymptotically complex hyperbolic manifolds, and the Schwarzschild spacetime. ...

متن کامل

ar X iv : m at h / 03 12 10 8 v 1 [ m at h . A P ] 4 D ec 2 00 3 RADIATION FIELDS , SCATTERING AND INVERSE SCATTERING ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS

In analogy with radiation fields for asymptotically Euclidean manifolds, introduced by F.G. Friedlander, we define radiation fields for asymptotically hyperbolic manifolds. We use them to give a translation representation of the wave group and to obtain the scattering matrix for such manifolds. Furthermore, we prove a support theorem for the radiation fields which generalizes to this setting th...

متن کامل

The Lichnerowicz Equation on Compact Manifolds with Boundary

In this article we initiate a systematic study of the well-posedness theory of the Einstein constraint equations on compact manifolds with boundary. This is an important problem in general relativity, and it is particularly important in numerical relativity, as it arises in models of Cauchy surfaces containing asymptotically flat ends and/or trapped surfaces. Moreover, a number of technical obs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009